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Abstract. Decisions arising in architecting processes greatly impact the success of the final product, 

however are subject to high uncertainty and large combinatorial design spaces. Selecting the best 

architecture for the problem at hand can be supported by architecture optimization techniques. In this 

paper, we show how architecture optimization can used for designing complex aeronautical systems, 

with the design of hybrid-electric aircraft propulsion systems as an application case. The function-

based architecture optimization problem is formulated using an Architecture Design Space Graph 

(ADSG) created with the ADORE tool. Automatically generated architecture alternatives are 

evaluated using a multidisciplinary analysis framework coupling an overall aircraft design tool to 

mission and propulsion system simulation code. The multidisciplinary analysis toolchain is rebuilt 

for each architecture, automatically including and coupling selecting components. Architectures are 

optimized for three objectives using a multi-objective genetic algorithm. It is demonstrated that the 

large architecture design space can be effectively searched and a Pareto front can be obtained. 

 1. Introduction 

Electric and hybrid-electric propulsion is becoming a feasible option for general aviation and 

commuter aircraft, opening the door towards a growing field of aviation with the opportunity of zero-

emission flight (McDonald et al. 2021). The architecture of the propulsion system plays an important 

role in the design of (hybrid-)electric aircraft: novel combinations of various electrical, mechanical 

and thermal components enable the creation of new architectures which must be investigated at the 

early stage of the design process due to their large impact on the performance of the final product 

(Biser et al. 2020). Due to the lack of knowledge about the behavior of the system at such early stage, 

the specific impacts of architectural decisions on the overall aircraft design suffer from a high degree 

of uncertainty. In addition, the close coupling between the different disciplinary domains, such as 

aerodynamics, propulsion, and aircraft sizing, makes it difficult for designers to be able to evaluate 
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the influences of architecting decisions (Palaia et al. 2021). Furthermore, the architecture design 

space can be extremely large due to a combinatorial explosion of alternatives (Iacobucci 2012). This 

lack of knowledge and the existence of a large design space often lead to reliance on expert judgement 

to support taking decisions, which might suffer from bias, subjectivity, conservatism or 

overconfidence (Roelofs & Vos 2018). To increase the level of certainty of the impact of architectural 

decisions on performance, and reduce reliance on expert judgement, it is necessary to employ 

physics-based systematic design space exploration techniques in search for novel architectures for 

hybrid electric propulsion systems (Bussemaker & Ciampa 2022). These techniques involve the 

explicit definition and tracking of architectural choices, and rely on the automatic generation and 

quantitative evaluation of architecture candidates through optimization to find the best architecture, 

or Pareto-front of architectures, within the design space. 

This paper demonstrates the application of architecture optimization techniques to the design of 

hybrid-electric propulsion systems. The system architecting process is connected to the 

multidisciplinary propulsion system performance analysis code, developed by the authors in (Fouda 

et al. 2022), to enable systematic design space exploration. The rest of the paper starts with discussion 

about system architecting and architecture optimization. Then, architecture design space modeling, 

and modular propulsion system architecture analysis methodologies are introduced. A description of 

the implementation of the method and descriptions of the tools used are provided after that. Finally, 

the methodology is demonstrated using a hybrid-electric propulsion architecture optimization study 

of a short-range commuter aircraft. 

The work presented in this paper has been performed as part of the EU-funded AGILE4.0 project, 

wherein the German Aerospace Center (DLR) lead the development of a Model-Based Systems 

Engineering (MBSE) framework for complex system design (Bussemaker, Boggero & Nagel 2023; 

Ciampa, Rocca & Nagel 2020). The framework consists of two consecutive and connected phases, 

an upstream architecting phase, and a downstream product design phase (Ciampa & Nagel 2021). 

The upstream phase is executed within an MBSE context, dealing with stakeholders needs, system 

requirements, scenarios, and architecture design. The downstream phase is executed within a 

Multidisciplinary Analysis and Optimization (MDAO) context. MDAO deals with solving 

computational systems coupling multiple disciplinary analysis tools, each dealing with one aspect of 

the system to be designed (for example: designing an aircraft engine, analyzing aerodynamic 

performance, or estimating costs) (Sobieszczanski-Sobieski, Morris & Tooren 2015), possibly 

operated by different experts, departments, or organizations (Ciampa & Nagel 2020). The application 

of MDAO allows finding the optimal balance between these disciplines with often tightly-coupled 

and opposing design goals. By bridging the gap between the two phases, the best architecture(s) can 

be identified by applying formal design optimization techniques to the architecture design space. 

 1.1. System Architecture Optimization 

In systems engineering, the product to be designed is treated as a system; a set of interconnected 

components that work together to produce some benefit to its users (NASA 2016). To avoid bias 

towards familiar solutions when designing a system, it is necessary to define what the system does 

(its function) before how the system does it (its form) (Hirtz et al. 2002). The system architecting 

process can then be seen as a decision-making process where the allocation of function to form, and 

the selection of relationships among elements of form (i.e. system components) together define a 

design space of architecture instances: the architecture design space (Crawley, Cameron & Selva 

2015). A systematic approach towards architecting needs to start at the system boundary function, 

which defines the purpose of existence of the system (Mavris, Tenorio & Armstrong 2008). Then 

possible design decisions are identified and methodically explored in pursuit of the best possible 

combination of decisions to reach an optimal architecture to achieve design objective(s) (Judt & 

Lawson 2016). 



 

Architecture optimization enables the unbiased automated search for the best architecture by defining 

the design problem as a numerical optimization problem. An optimization algorithm is used to vary 

a set of design variables (the design vector) and observe their impact on one or more merit functions 

(objective functions) with the goal of finding the design vector that minimizes (or maximizes) the 

values of these functions without violating any constraints (Simmons & Crawley 2008). In 

architecture optimization, design variables represent architecture decisions (Bussemaker, Ciampa & 

Nagel 2020). Design variables can be either discrete or continuous. Discrete design variables can be 

either integer, such as the number of propellers, or categorical, as the choice between using a 

turboshaft engine or an electric motor (Saves et al. 2022). Examples of a continuous design variables 

are component sizing parameters such as the propeller diameter or the rated power of the electric 

motor. Another aspect that arises architecture optimization is decision hierarchy: some architecting 

decisions can be conditionally active based on other decisions (Pelamatti et al. 2020). For example, 

the type of electric power source only needs to be chosen if an electric motor is selected to provide 

shaft power in a propulsion system. If, however, a turboshaft engine is selected, the electric power 

source choice would be inactive. 

Several factors contribute to the difficulty of solving architecture optimization problems. One aspect 

is that there is no a-priori information about the behavior and shape of the objective and constraint 

functions, and they might take significant time to calculate. Therefore, the performance analysis 

model is considered as an expensive black-box function (Jones, Schonlau & Welch 1998). 

Additionally, due to conflicting stakeholder needs, the system might need to be optimized for 

multiple conflicting objectives. This means there is no one optimal architecture, but rather a set of 

Pareto-optimal architectures where some architectures are better than others for some objectives, but 

worse than others for other objectives (Rudenko & Schoenauer 2004). The combination of the 

previously discussed aspects makes the architecture optimization problem a mixed-discrete, multi-

objective, hierarchical problem (Bussemaker, Ciampa & Nagel 2020). This class of problems is 

challenging for existing optimization algorithms as they have significant difficulties with either 

finding a set of optimal points at all, or finding an approximation of the Pareto-set without needing 

excessive function evaluations (Bussemaker, Bartoli, et al. 2021). 

 2. Methodology 

In this section the methodology used to implement architecture design space definition, architecture 

optimization, and hybrid-electric propulsion system architecture performance evaluation is explained 

in more details. First, a description of how to formally describe the architecture design space is 

provided. Then, a flexible simulation approach that allows modular definition of a propulsion 

architecture and its aircraft-level evaluation is presented. 

 2.1. Function-Based Architecture Design Space Modeling and 
Evaluation 

The design space is modeled using the Architecture Design Space Graph (ADSG) (Bussemaker, 

Ciampa & Nagel 2020): a graph-based formulation mapping functions to components and 

additionally representing component characterization (instantiation and selection of attribute values) 

and connection choices. The ADSG is a directed graph where edges between nodes represent 

derivation relationships: if the source node is contained in an architecture instance, the target node is 

too. Architectural decisions are represented by selection-choice nodes, where target nodes represent 

mutually-exclusive options. For example, allocating more than one component to a function 

represents a selection-choice, as each function is fulfilled by only one component in an architecture 

instance. Component connection choices are modeled using connection-choice nodes, where source 

and target nodes represent connection sources and targets, respectively. If not possible using 

selection-choices, technology compatibility constraints can also be modeled using incompatibility 

edges: connections between nodes that may never appear in an architecture instance together. 



 

Performance metrics (including objectives and constraints) and additional evaluation inputs are 

described using Quantities of Interest (QOIs). For more information about the ADSG, the reader is 

referred to (Bussemaker & Ciampa 2022). 

The architecture design space is modeled using ADORE: a Python implementation of the ADSG with 

a web-based user interface for editing the ADSG, creating architecture instances from the ADSG, 

defining numerical optimization problems, and interfacing with optimization frameworks for driving 

the design space exploration (Bussemaker, Boggero & Ciampa 2022). fig. 2.1 shows the interactive 

editing canvas. 

 

Figure 2.1: ADORE web-based graphical user interface showing the design space editing canvas. 

Figure reproduced from (Bussemaker, Boggero & Ciampa 2022). 

Architecture evaluation, i.e. calculating performance metrics of a generated architecture instance, is 

not implemented in ADORE itself, however several mechanisms for connecting to evaluation 

environments are available (Bussemaker & Boggero 2022; Bussemaker, Boggero & Ciampa 2022). 

One Python-based method is the Class Factory Evaluator (CFE): an object-oriented approach for 

instantiating classes based on element occurrence in architecture instances. Class properties can be 

filled from Quantities of Interest (QOIs) or component connections (represented by references to 

other class instances). Compared to directly parsing ADORE’s data model, the CFE offers a more 

intuitive and flexible approach for implementing Python-based architecture evaluation. 

The architecture optimization loop using CFE is presented in fig. 2.2. At each iteration, the 

optimization algorithm suggests a design vector 𝑥, which is then converted to an architecture instance 

by ADORE. As some design variables might be inactive due to design variable hierarchy, the design 

vector is corrected to reflect this: the imputed design vector 𝑥𝑖𝑚𝑝 and associated activeness vector 𝛿, 

specifying which design variable is active in the design vector, are returned back to the optimizer 

(Bussemaker, Bartoli, et al. 2021). The defined class factories then use the architecture instance to 

instantiate objects, which are used to define the simulation input. The optimization loop is finally 

closed by extracting performance metrics from the simulation output, which are integrated in the 

architecture instance model and communicated back to the optimizer. 



 

 

Figure 2.2: Architecture optimization loop with the Class Factory Evaluation (CFE) approach. Figure 

adopted from (Bussemaker & Boggero 2022). 

 2.2. Hybrid-Electric Propulsion System Modeling and Evaluation 

To apply architecture optimization to the design of some system of interest, in this case the design of 

hybrid electric propulsion architectures, several aspects should be considered. First, all possible 

architecture choices must be explicitly defined by constructing a formal definition of the considered 

architecture design space. In addition, a systematic approach for the design space exploration is 

needed. Lastly, flexible, modular and efficient simulation environments are required to quantitatively 

evaluate architectures in order to compare them to each other (Bussemaker, Ciampa & Nagel 2021). 

Brelje et al. have performed an extensive recent literature study in (Brelje & Martins 2018; Brelje & 

Martins 2019) to investigate the capabilities of existing simulation environments to address different 

sub-problems with regard to electric and hybrid electric aircraft design. Existing design frameworks 

have focused on the detailed-analysis part of the design problem, such as aerodynamic analysis, 

electric components modeling, and thermal management, which are crucial for architecture 

performance evaluation. An analysis of a turbo-electric architecture coupled with distributed 

propulsion is presented in (Vries, Brown & Vos 2018). A procedure for sizing series hybrid electric 

propulsion architectures with energy management strategy is described in (Finger et al. 2020). A 

multidisciplinary optimization study for the hybridization of single-aisle tube- and-wing 

configuration aircraft with distributed electric fans is introduced in (Sgueglia et al. 2020), and a 

hybridization strategy for sizing non-conventional configurations in provided in (Palaia et al. 2021). 

Palladino et al. (Palladino et al. 2020, 2023) integrated hybrid-electric propulsion sizing for several 

system architectures in an overall aircraft design platform. Sahoo et al. (Sahoo, Zhao & Kyprianidis 

2020) present an overview of existing hybrid-electric and electric propulsion concepts, and highlight 

the tightly-coupled nature of the aircraft sizing problem. They compare different propulsion system 

sizing methods, all of which are only applied for predefined system architectures. 

In this work, we use the modular and flexible hybrid-electric propulsion system architecture builder 

and evaluation framework introduced by Fouda et al. (Fouda et al. 2022) to enable dynamic 

formulation of the propulsion system numerical evaluation model. The evaluation framework is 

based on OpenConcept (Brelje & Martins 2018), an open-source mission analysis and propulsion 

system modeling framework. OpenConcept is a set of component models and mission integration 

routines programmed using NASA’s OpenMDAO (Gray et al. 2019) framework, an open-source 

Multidisciplinary Design Analysis and Optimization (MDAO) framework with system-level 

gradients calculation, enabling rapid convergence through the use of gradient-based solvers and 

optimizers. 

The architecture builder enables the definition of the propulsion system architecture using class 

instances (combined in a PropSysArch class instance), which are then used to construct the numerical 

OpenMDAO model using OpenConcept library items. Each architecture consists of thrust, 



 

mechanical power, and electrical power generation elements. Thrust generation elements convert 

mechanical power into thrust; mechanical power is generated from fuel or electrical power; and 

electrical power is generated from batteries and/or generators, and are only included if electrical 

power is needed for mechanical power generation. The architecture builder logic is shown in fig. 2.3. 

For a more detailed description of available classes and underlying numerical models, the reader is 

referred to (Fouda et al. 2022). 

 

Figure 2.3: Architecture builder logic. Architectures are constructed from thrust, mechanical power, 

and electrical power generation elements. Figure adopted from (Fouda et al. 2022). 

The appropriateness of the architecture builder for architecture optimization comes from the fact that 

all propulsion architectures have a common computational interface for connecting to analysis at a 

higher system level (e.g. mission analysis and aircraft sizing): the computational elements that are 

different between architecture instances are contained within the common interface, and are therefore 

effectively “hidden” from the rest of the computational problem. Additionally, the class-based 

definition used by the architecture builder makes it possible to use the Class Factory Evaluator (CFE) 

approach for converting ADORE architectures to evaluation models (i.e. the green boxes in fig. 2.2). 

The architecture builder framework is integrated in the architecture optimization loop such that when 

a new architecture instance is created, the numerical model of the same architecture is automatically 

constructed and can be used to size the architecture and calculate its performance in terms of weight, 

fuel burn, and electrical energy usage. 



 

 3. Implementation 

The methodology discussed in previous sections is implemented using several tools to cover the 

modeling, evaluation, and optimization of propulsion system architectures. This section describes the 

tools involved, and how they are connected to each other. 

 3.1. Structure of the Architecture Optimization Problem 

The architecture optimization problem is implemented as a bi-level optimization loop: 

1. An outer architecture optimization loop generates new propulsion system architectures that 

are analyzed by the inner loop. The architecture optimization loop is formulated as a multi-

objective global optimization problem. 

2. An inner sizing optimization loop sizes one particular architecture at a time, and calculates 

its performance in terms of weight, fuel burn, and electricity usage. The sizing optimization 

loop is formulated as a single-objective gradient-based (i.e. local) optimization problem 

The architecture optimization loop starts by an optimizer suggesting some design vector 𝑥𝑎𝑟𝑐ℎ, that 

is converted to an ADORE architecture instance. The Class Factory Evaluator (CFE) code then 

translates the ADORE architecture to a PropSysArch instance (see sec. 3.3), which is input for the 

architecture builder that constructs an OpenMDAO/OpenConcept model from it. The sizing 

optimization loop is then executed and resulting performance metrics are returned to the architecture 

optimizer, together with the imputed architecture design vector 𝑥𝑎𝑟𝑐ℎ𝑖𝑚𝑝
, to start the next architecture 

optimization loop. This process is analogous to fig. 2.2 (where the sizing optimizer plays the role of 

problem-specific evaluation code) and is visualized in fig. 3.1. The architecture optimization 

problem, in terms of design vector, objectives, and constraints, is defined by the ADORE model. The 

design vector consists of architectural choices and several other architecture-level design variables, 

such as Degree of Hybridization (DoH) and number of propeller blades. 

 

Figure 3.1: XDSM view of the architecture optimization loop. Compare to fig.  2.2. CFE means Class 

Factory Evaluator. 

The sizing optimization loop takes one specific architecture instance at a time and sizes the aircraft, 

evaluates and optimizes the mission profile. During this process, the engines of the aircraft, as well 

as the batteries required to complete the mission (if the architecture has batteries), are sized. The 

aircraft is sized by the Overall Aircraft Design (OAD) tool OpenAD (Wöhler et al. 2020), which 

takes as inputs the union of the aircraft’s Top-Level Aircraft Requirements (TLARs) and outputs of 

the mission simulation using OpenConcept. TLARs include the design range, cruise altitude, design 

                        

      

          

           

                  

                 

                 

           
                      

  
     

  
   

  
                    

                   
                



 

payload, cruise Mach number and the wing loading. The output of OpenAD is a consistent aircraft 

design, including geometry, weights breakdown, and drag polar. These parameters are taken as input 

to OpenConcept, together with the mission definition, and PropSysArch. OpenConcept then 

simulates the mission and calculates the propulsion system weight, amount of fuel used, and battery 

state-of-charge at the end of the mission. Fuel usages, the propulsion system weight, and mission 

segment durations are fed back into OpenAD. Fig. 3.2 shows the sizing optimization loop 

conceptually. 

 

Figure 3.2: XDSM view of the sizing optimization loop. OAD mean Overall Aircraft Design. The 

Sizing_Objective parameter refers to 𝑓𝑠𝑖𝑧𝑖𝑛𝑔. 

The sizing optimizer then optimizes the architecture by sizing the propeller blades, motors and 

engines to provide enough thrust, sizing the batteries such that there is enough charge left at the end 

of the flight, and optimizing airspeeds and vertical speeds for climb, cruise, and descend segments. 

Following objective is optimized for, based on (Fouda et al. 2022): 

𝑓𝑠𝑖𝑧𝑖𝑛𝑔(𝑥𝑠𝑖𝑧𝑖𝑛𝑔) = (1 − 𝑡𝑐𝑜𝑒𝑓𝑓) ⋅ (𝑊𝑓𝑢𝑒𝑙 + 0.01 ⋅ 𝑀𝑇𝑂𝑊) + 𝑡𝑐𝑜𝑒𝑓𝑓 ⋅ 0.01 ⋅ 𝑡𝑓𝑙𝑖𝑔ℎ𝑡  (3.1) 

with 𝑊𝑓𝑢𝑒𝑙 the mission fuel burn, 𝑀𝑇𝑂𝑊 the maximum take-off weight and 𝑡𝑓𝑙𝑖𝑔ℎ𝑡 the flight time . 

𝑡𝑐𝑜𝑒𝑓𝑓 is a design variable of the outer optimization loop that can take any value from 0 to 1 and that 

determines the importance of the different objectives when sizing the desired architecture. The higher 

its value, the more important reducing flight time is compared to “green” objectives (fuel consumed 

and MTOW) when sizing the architecture. 

OpenAD takes in the order of 30 seconds to produce a consistent aircraft model, whereas 

OpenConcept takes only in the order of seconds to simulate the mission. To improve convergence 

speed, OpenAD is coupled to OpenConcept as a Kriging surrogate model (similar to the idea 

presented in (Dubreuil et al. 2020)). This surrogate model is created using the SMT library (Bouhlel 

et al. 2019), and is initialized by a Design of Experiments over OpenAD inputs. After OpenConcept 

and the OpenAD surrogate model have converged, the real OpenAD tool is executed to ensure that 

the surrogate model and the real outputs are consistent, and to update the surrogate model so it is 

more accurate in future evaluations. 



 

 3.2. Modeling the Architecture Design Space 

The architecture design space model is an ADORE model mapping functions to components and 

modeling architectural decisions. The design space model starts from a boundary function: the main 

function a system provides to its users (Mavris, Tenorio & Armstrong 2008). For a propulsion system 

this is to “Provide Propulsive Power” (Esdras & Liscouët-Hanke 2015). This is fulfilled by the 

“Thrust generator” component, which in order to produce thrust needs another function to be 

provided, which is to “Accelerate air”, see fig. 3.3. For this problem, only propellers are considered, 

although in a broader design space also turbofans or turboprops could fulfill this function. The 

optimization objectives, fuel consumption, Maximum Take-off Weight (MTOW), and flight duration 

are system-level Quantities of Interest (QOIs), and are therefore associated to the boundary function. 

 

Figure 3.3: Origin of the design space model, where the boundary function as well as the different 

objectives are introduced. Element types: function (FUN), component (COMP), Quantity of  Interest 

(QOI). 

Propellers need two functions to be fulfilled, see fig. 3.4. The first is to decouple the RPM of the 

propeller from the RPM of the shaft , implemented by a gearbox. The second function is the 

generation of shaft power. In this case three different options arise (see fig. 3.4): the first option is to 

use a mechanical turboshaft, which would lead to the conventional architectures currently found on 

most turboprop aircraft. The second option would be to use only electrical power converted into shaft 

power by some electric motors. The third option would be a combination of the conventional and 

electric sources, leading to hybrid-electric architectures. In this last option, the component that is 

providing the power is a mechanic bus, and thus a component that is able to receive both electrical 

and mechanical power, and transmit them to the propellers, would also be needed. This would be 

done by a mechanic splitter. 

    
               

          
                  

          
      

          
          

         
                   

    
                  

     
                

                 



 

 

Figure 3.4: Functions to be fulfilled for the propeller component in order to pro duce thrust. Also, the 

different options in order to produce power shaft are introduced, and the blue -dashed lines represent 

an architectural decision. Element types: function (FUN), component (COMP), multi -fulfillment 

(MULTI). 

If the electric motor is selected to provide (part of) the mechanical power, the architecture related to 

electric power generation and distribution is included. Motors only work with AC power, and 

therefore inverters are needed in order to convert the DC power provided by the DC bus into AC 

power, as shown in fig. 3.5. 

 

Figure 3.5: Functions that need to be fulfilled for the motor. Both the conversion from DC into AC 

and the generation of DC electrical power can be observed. Element types: function (FUN), 

component (COMP), decomposition (DE). 

Then, there are three different options in order to produce this DC electrical power: the first option 

is to use batteries, the second option is to use a turboshaft to generate shaft power and attach it to a 

generator to generate DC power. In the second case, a rectifier would also be needed in order to 

convert the AC electrical power into the DC electrical power that the DC bus needs. 

    
                      

     
     

     

   
        

            

    
                

    
                

          

          

     
        

     
      

    
                 

            

                 



 

 

Figure 3.6: Different options for the generation of the electrical power needed by the motors. 

Element types: function (FUN), component (COMP), decomposition (DE), multi -fulfillment 

(MULTI). 

Similarly as for generating mechanical power, the third option here is to generate part of the power 

from each of the two sources. In that case, part of the electrical power would be coming from the 

batteries and other part from the generator, and an electric splitter would be needed to merge the 

electrical power sources into a single input for the motors. 

There are some decisions, such as Degree of Hybridization (DoH) for different mission segments, 

that are modeled at the component-level, see fig. 3.7. A DoH value of 0 means power comes from 

turbomachinery elements, and a value of 1 means power comes from electrical elements. 

 

Figure 3.7: Implementation of the different DoH inside an ADORE component, in this case the 

mechanic splitter. 

Each propeller is modelled as a subsystem, as shown at fig. 3.8 , as this allows to define the number 

of engines as an architecture choice. Between 1 and 5 engines per wing can be selected. 

    
                   

    
                 

    
                

    
               

    
                   

     
                   

     
         

     
         

     
         

     
                 

   
      

      
                

                        

        

            

     

            

            

            

                    

            

        

     

    
                   

     
             

            

    

         
                       

         
                        

         
                         

         
                               

         
                                

         
                                 

         
                        

 



 

 

Figure 3.8: Example of the propeller subsystem, with the constrained choices represented in purple.  

Each propeller can have its own source of shaft power. In this application case, the order at which 

the propeller subsystems are placed along the wing has no influence on calculated performance 

metrics. For example, a wing with two propellers where the first has a turboprop and the second has 

an electric motor for mechanical power generation results in the same weight, fuel burn, and flight 

time as a wing where these two have swapped places. This limitation stems from the available 

analysis tools that cannot represent effects of engine order on wing root bending moment, 

aerodynamic interactions or other phenomena. In order to avoid repeated definition of architectures 

with the same output metrics, a choice constraint is applied such that only unordered combinations 

of mechanical power generation components can be defined. The constrained nature of the decision 

is shown by purple-dashed lines in fig. 3.8 

Combining the previous models, the complete design space can be observed in fig. 3.9 

    
         

    
            

     
         

     
               

     
     

     
                 

     
             

      
        

     

     

        

            

            

        

            

        

            

    
                   



 

 

 

Figure 3.9: Complete Architecture Design Space Graph of the optimization problem modeled in ADORE.

    
               

    
                      

    
            

    
                

    
                

    
                 

    
               

    
                   

    
                

    
                   

          
                  

          
      

          
          

         
                         

    
                  

     
        

     
      

     
         

     
         

     
                 

     
         

     
           

     
                   

     
                

   
        

   
               

      
                

    
         

    
            

     
         

     
               

     
     

     
                 

     
             

      
        

     

     

        

            

            

        

            

        

            

    
                   

            

                 

            

        

            

        

     

            

                 

            

            

     

            

     

            

          

          
            

          

          

            

            

     

     



 

Considering the choice constraints mentioned before and other assumptions, such as a constant 

number of blades for all propellers or the existence of a common electric generation source, the valid 

design space consists of 310 architectures. This number does not take continuous variables, such as 

the different degrees of hybridization. The architectural design space therefore is larger than only 

these 310 architectures. 

 3.3. Architecture Instance Model Translator 

Each generated architecture instance needs to be translated to a PropSysArch instance in order to 

create and run the sizing optimization. This is done using class factories, which define the logic for 

instantiating classes based on component occurrence in architecture instances. For example, a class 

factory might specify to instantiate the Propeller class if the propeller component occurs in an 

architecture instance, and give it properties taken from associated Quantities of Interest such as 

diameter and number of blades. As the PropSysArch class itself is comprised of class instances 

representing architecture components, this plays very well with this class instantiation approach. 

Each component class that can be part of the PropSysArch has an associated class factory, defining 

for which ADORE model elements it should be instantiated, and which QOIs from the ADORE 

model should be taken as property values. The architecture evaluation code itself then becomes 

relatively simple: 

1. Instantiate component classes from the architecture instance using the class factories (“Class 

Factory Instantiation” in fig. 2.2); 

2. Construct the PropSysArch instance (“Create Simulation Input“); 

3. Build and run the sizing optimization OpenMDAO problem (“Run Simulation Code“); 

4. Extract results from the optimization and return them to ADORE (“Extract Output Metrics”). 

 4. Demonstration and Results 

In this section, the design problem demonstrating hybrid-electric aircraft propulsion system 

architecture optimization is presented. The section finished with a description of the executed 

optimization problem, and a presentation and discussion of results. 

 4.1. Design Problem Description 

The propulsion system architecture will be designed and optimized for the King Air C90GT aircraft: 

a popular twin-turboprop aircraft with a capacity for seven passengers. TLARs are obtained from 

(Beechcraft kingair C90GT n.d.; McClellan 2021; OpenConcept KingAirC90GT n.d.). A 

representation of the aircraft created using OpenAD is shown in fig. 4.1. 

 

Figure 4.1: Visualization of the reference aircraft.  



 

The design mission range is taken from a typical mission with 4 passengers, in order to have a fair 

comparison between different architectures. Wing loading is kept fixed for all architectures to meet 

take-off and landing distance requirements by automatically resizing the wing for changing MTOW. 

The simulated mission consists of climb, cruise, and descend segments, both for the main and the 

reserve mission, and a loiter segment to account for holding time. Furthermore, it is assumed that all 

turboshaft components have a specific fuel consumption of 0.6 lbf/hp/hr (Engine specification - 

evolutionaircraft.com n.d.), and batteries have an energy density of 1200 Wh/kg and specific power 

of 5000 W/kg. 

Some of the design variables of the inner loop are common across all architectures, whereas others 

are only included when specific architecture components are present. For example, design variables 

related to power rating are specific for the power-generating elements, and therefore are only included 

if those elements are included. There are a total of 12 common design variables and 4 optional design 

variables, depending on the architecture that is chosen by the external optimizer, presented in 

table 4.1. 

Table 4.1: Inner optimization loop design variables with the components that activate them. 

Design variable Activated for Component 

Equivalent air speed at each segment (x7) All 

Vertical speeds (x4) All 

Propeller diameter Propeller (always included) 

Motor rating Electric Motor 

Engine rating Mechanical Turboshaft 

Electric engine rating Electric Turboshaft 

Batteries weight Batteries 

Constraints behave similarly: common constraints include ones for the throttle at each segment (7 

constraints), as well as the propeller diameter. Then depending on the architecture, additional 

constraints might be included, such those that ensure that each component has the capacity of 

producing the power required at each segment (sizing margin constraints). Thus, there will be always 

at least 8 constraints that are common for all architectures, and there is a total of 50 optional 

constraints too, see table 4.2 for more details. 

Table 4.2: Inner loop constraints with the components that activate them. 

Constraint Activated for Component 

Throttle at each segment (x7) All 

Propeller diameter Propeller (always included) 

Turboshaft sizing margin (x14) Mechanical Turboshaft 

Motor sizing margin (x14) Electric Motor 

Electric turboshaft sizing margin (x7) Electric Turboshaft 

Batteries sizing margin (x14) Batteries 

Final state of charge (SOC) Batteries 

 4.2. Architecture Optimization Results 

The inner sizing loop is driven by the gradient-based SLSQP algorithm implemented in Scipy1. The 

outer architecture optimization loop is driven by a surrogate-based multi-objective optimization 

algorithm based on work presented in (Bussemaker, Bartoli, et al. 2021), with an initial Design of 

Experiments size of 100 points and 150 subsequent infill points. 

                                                 
1 https://scipy.org/ 

https://scipy.org/


 

Results of the architecture optimization are shown in fig. 4.2 where a Pareto front with a total of 88 

design points has been obtained. 

 

Figure 4.2: Plot showing all evaluated architectures. The Pareto front is shown in blue.  

As shown in fig. 4.3, the extreme points of the Pareto front correspond to the fully electric 

architecture (lowest fuel consumption and highest MTOW) and the conventional architecture 

(highest fuel consumption and lowest MTOW). Between these two clusters of points, almost all the 

architectures that can be found in the Pareto front are parallel hybrid-electric architectures 

(i.e. mechanical power is generated both by electric motors and turboshafts), which can be explained 

by the great flexible performance of these architectures due to the different mechanic DoH they can 

work with. 

 

Figure 4.3: Different architectures of the Pareto front according to the source of power.  

Finally, when it comes to the competitiveness of the aircraft in terms of flight time, a general trend 

emerges as seen in fig. 4.4: if a lower flight time is wanted, more energy will be necessary to complete 

the mission, in the form of a higher fuel consumption or a heavier aircraft. This trend is consistent 

with (Proesmans & Vos 2022). 



 

 

Figure 4.4: Flight time of the architectures found in the Pareto front . A lower normalized flight time 

(shown in darker color) represents a higher cruise speed.  

 5. Conclusion and Outlook 

This work has shown that it is feasible to apply architecture optimization to hybrid-electric propulsion 

system design problems. For these types of problems, the architecture plays an important role in the 

performance of the system, and especially when searching for novel architectures numerical 

optimization techniques should be applied to enable searching a larger design space. 

The architecture optimization problem is implemented in a bi-level formulation, with the outer 

optimization loop generating new architectures and optimizing for fuel burn, MTOW and flight time, 

and the inner optimization loop sizing specific architecture instances to ensure they can fly the 

mission. OpenConcept is used for mission and propulsion architecture simulation, OpenAD is used 

for overall aircraft design, and the sizing optimization problem is implemented in OpenMDAO. The 

OpenMDAO problem is automatically constructed for each architecture instance using an 

architecture builder code that uses Python class instances to define the propulsion system 

architecture. 

The architecture design space is modeled using the Architecture Design Space Graph (ADSG) 

methodology, implemented in ADORE. The ADORE model is converted to the Python classes using 

the Class Factory Evaluator approach: class factories are rules that define how to instantiate classes 

for different architecture elements (e.g. the Propeller element instances the Propeller class, with 

certain properties). The architecture design space modeling method follows a function-based 

approach, where the main architectural decisions are defined from decisions regarding which 

component fulfills a function. In the case of the hybrid-electric propulsion architecture, for example, 

one such choice is how to generate mechanical power: either by electric motor, a turboshaft engine, 

or a combination of both. 

The architecture optimization formulation is demonstrated by optimizing a hybrid-electric propulsion 

system for the King Air C90GT regional commuter aircraft. It is shown that a Pareto front trading-

off fuel burn, MTOW and flight time can be obtained using a multi-objective evolutionary 

optimization algorithm. A Pareto front can then be used in subsequent decision-making and scenario 

analysis steps. 

The potential of architecture optimization should be investigated along several directions. First, the 

design space size of this type of design problem should be increased to show that architecture 

optimization is also effective for extremely large number of possible architectures (e.g. 123 000 



 

possible architectures as seen in (Frank et al. 2016)). Then, higher fidelity analysis and more 

disciplines should be included in the architecture optimization problem, including the possibility to 

integrate analysis tools from different partners. Finally, a more general method for implementing 

architecture evaluation using MDAO should be developed, so that less problem-specific code is 

needed and more logic can be reused across design problems. 
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