Preprint Open Access

Model order reduction for parametric high dimensional models in the analysis of financial risk

Binder, Andreas; Jadhav, Onkar; Mehrmann, Volker

This paper presents a model order reduction (MOR) approach for high dimensional problems in the analysis of financial risk. To understand the financial risks and possible outcomes, we have to perform several thousand simulations of the underlying product. These simulations are expensive and create a need for efficient computational performance. Thus, to tackle this problem, we establish a MOR approach based on a proper orthogonal decomposition (POD) method. The study involves the computations of high dimensional parametric convection-diffusion reaction partial differential equations (PDEs). POD requires to solve the high dimensional model at some parameter values to generate a reduced-order basis. We propose an adaptive greedy sampling technique based on surrogate modeling for the selection of the sample parameter set that is analyzed, implemented, and tested on the industrial data. The results obtained for the numerical example of a floater with cap and floor under the Hull-White model indicate that the MOR approach works well for short-rate models.

Files (890.6 kB)
Name Size
890.6 kB Download
All versions This version
Views 2929
Downloads 2020
Data volume 17.8 MB17.8 MB
Unique views 2929
Unique downloads 1919


Cite as