Preprint Open Access

Model order reduction for parametric high dimensional models in the analysis of financial risk

Binder, Andreas; Jadhav, Onkar; Mehrmann, Volker

This paper presents a model order reduction (MOR) approach for high dimensional problems in the analysis of financial risk. To understand the financial risks and possible outcomes, we have to perform several thousand simulations of the underlying product. These simulations are expensive and create a need for efficient computational performance. Thus, to tackle this problem, we establish a MOR approach based on a proper orthogonal decomposition (POD) method. The study involves the computations of high dimensional parametric convection-diffusion reaction partial differential equations (PDEs). POD requires to solve the high dimensional model at some parameter values to generate a reduced-order basis. We propose an adaptive greedy sampling technique based on surrogate modeling for the selection of the sample parameter set that is analyzed, implemented, and tested on the industrial data. The results obtained for the numerical example of a floater with cap and floor under the Hull-White model indicate that the MOR approach works well for short-rate models.

Files (890.6 kB)
Name Size
2002.11976.pdf
md5:f90345baebcc4a293125e115664591c7
890.6 kB Download
12
12
views
downloads
All versions This version
Views 1212
Downloads 1212
Data volume 10.7 MB10.7 MB
Unique views 1212
Unique downloads 1111

Share

Cite as