Conference paper Open Access
Bussemaker, J.H.; Bartoli, N.; Lefebvre, T.; Ciampa, P.D.; Nagel, N.
The design of complex system architectures brings with it a number of challenging issues,
among others large combinatorial design spaces. Optimization can be applied to explore the
design space, however gradient-based optimization algorithms cannot be applied due to the
mixed-discrete nature of the design variables. It is investigated how effective surrogate-based
optimization algorithms are for solving the black-box, hierarchical, mixed-discrete, multi-
objective system architecture optimization problems. Performance is compared to the NSGA-
II multi-objective evolutionary algorithm. An analytical benchmark problem that exhibits
most important characteristics of architecture optimization is defined. First, an investigation
into algorithm effectiveness is performed by measuring how accurately a known Pareto-front
can be approximated for a fixed number of function evaluations. Then, algorithm efficiency
is investigated by applying various multi-objective convergence criteria to the algorithms and
establishing the possible trade-off between result quality and function evaluations needed.
Finally, the impact of hidden constraints on algorithm performance is investigated. The code
used for this paper has been published.
Name | Size | |
---|---|---|
6.2021-3095.pdf
md5:470a440fd03cecee82ded5b819d8cf73 |
4.1 MB | Download |
Views | 99 |
Downloads | 130 |
Data volume | 530.0 MB |
Unique views | 91 |
Unique downloads | 120 |