scipy/scipy: SciPy 1.10.0rc1
Creators
- Ralf Gommers1
- Pauli Virtanen
- Evgeni Burovski
- Warren Weckesser
- Matt Haberland
- Travis E. Oliphant2
- Tyler Reddy3
- David Cournapeau4
- alexbrc
- Andrew Nelson
- Pearu Peterson1
- Josh Wilson
- endolith
- Nikolay Mayorov
- Ilhan Polat5
- Pamphile Roy6
- Stefan van der Walt7
- Matthew Brett8
- Denis Laxalde9
- Eric Larson10
- Jarrod Millman11
- Atsushi Sakai
- Lars
- peterbell101
- Paul van Mulbregt12
- CJ Carey12
- eric-jones
- Robert Kern13
- Nicholas McKibben
- Kai
- 1. Quansight
- 2. Quansight, OpenTeams
- 3. LANL
- 4. Mercari JP
- 5. Sandvik
- 6. @Quansight
- 7. University of California, Berkeley
- 8. London Interdisciplinary School
- 9. @dalibo
- 10. University of Washington
- 11. UC Berkeley
- 12. Google
- 13. @enthought
Description
Note: SciPy 1.10.0 is not released yet!
SciPy 1.10.0 is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with python -Wd and check for DeprecationWarning s).
Our development attention will now shift to bug-fix releases on the
1.10.x branch, and on adding new features on the main branch.
This release requires Python 3.8+ and NumPy 1.19.5 or greater.
For running on PyPy, PyPy3 6.0+ is required.
- A new dedicated datasets submodule (scipy.datasets) has been added, and is now preferred over usage ofscipy.miscfor dataset retrieval.
- A new scipy.interpolate.make_smoothing_splinefunction was added. This function constructs a smoothing cubic spline from noisy data, using the generalized cross-validation (GCV) criterion to find the tradeoff between smoothness and proximity to data points.
- scipy.statshas three new distributions, two new hypothesis tests, three new sample statistics, a class for greater control over calculations involving covariance matrices, and many other enhancements.
scipy.datasets introduction
- A new dedicated datasetssubmodule has been added. The submodules is meant for datasets that are relevant to other SciPy submodules ands content (tutorials, examples, tests), as well as contain a curated set of datasets that are of wider interest. As of this release, all the datasets fromscipy.mischave been added toscipy.datasets(and deprecated inscipy.misc).
- The submodule is based on Pooch (a new optional dependency for SciPy), a Python package to simplify fetching data files. This move will, in a subsequent release, facilitate SciPy to trim down the sdist/wheel sizes, by decoupling the data files and moving them out of the SciPy repository, hosting them externally and downloading them when requested. After downloading the datasets once, the files are cached to avoid network dependence and repeated usage.
- Added datasets from scipy.misc:scipy.datasets.face,scipy.datasets.ascent,scipy.datasets.electrocardiogram
- Added download and caching functionality: - scipy.datasets.download_all: a function to download all the- scipy.datasetsassociated files at once.
- scipy.datasets.clear_cache: a simple utility function to clear cached dataset files from the file system.
- scipy/datasets/_download_all.pycan be run as a standalone script for packaging purposes to avoid any external dependency at build or test time. This can be used by SciPy packagers (e.g., for Linux distros) which may have to adhere to rules that forbid downloading sources from external repositories at package build time.
 
scipy.integrate improvements
- Added scipy.integrate.qmc_quad, which performs quadrature using Quasi-Monte Carlo points.
- Added parameter complex_functoscipy.integrate.quad, which can be setTrueto integrate a complex integrand.
scipy.interpolate improvements
- scipy.interpolate.interpnnow supports tensor-product interpolation methods (- slinear,- cubic,- quinticand- pchip)
- Tensor-product interpolation methods (slinear,cubic,quinticandpchip) inscipy.interpolate.interpnandscipy.interpolate.RegularGridInterpolatornow allow values with trailing dimensions.
- scipy.interpolate.RegularGridInterpolatorhas a new fast path for- method="linear"with 2D data, and- RegularGridInterpolatoris now easier to subclass
- scipy.interpolate.interp1dnow can take a single value for non-spline methods.
- A new extrapolateargument is available toscipy.interpolate.BSpline.design_matrix, allowing extrapolation based on the first and last intervals.
- A new function scipy.interpolate.make_smoothing_splinehas been added. It is an implementation of the generalized cross-validation spline smoothing algorithm. Thelam=None(default) mode of this function is a clean-room reimplementation of the classicgcvspl.fFortran algorithm for constructing GCV splines.
- A new method="pchip"mode was aded toscipy.interpolate.RegularGridInterpolator. This mode constructs an interpolator using tensor products of C1-continuous monotone splines (essentially, ascipy.interpolate.PchipInterpolatorinstance per dimension).
scipy.sparse.linalg improvements
- The spectral 2-norm is now available in scipy.sparse.linalg.norm.
- The performance of scipy.sparse.linalg.normfor the default case (Frobenius norm) has been improved.
- LAPACK wrappers were added for trexcandtrsen.
- The - scipy.sparse.linalg.lobpcgalgorithm was rewritten, yielding the following improvements:- a simple tunable restart potentially increases the attainable accuracy for edge cases,
- internal postprocessing runs one final exact Rayleigh-Ritz method giving more accurate and orthonormal eigenvectors,
- output the computed iterate with the smallest max norm of the residual and drop the history of subsequent iterations,
- remove the check for LinearOperatorformat input and thus allow a simple function handle of a callable object as an input,
- better handling of common user errors with input data, rather than letting the algorithm fail.
 
scipy.linalg improvements
- scipy.linalg.lu_factornow accepts rectangular arrays instead of being restricted to square arrays.
scipy.ndimage improvements
- The new scipy.ndimage.value_indicesfunction provides a time-efficient method to search for the locations of individual values with an array of image data.
- A new radiusargument is supported byscipy.ndimage.gaussian_filter1dandscipy.ndimage.gaussian_filterfor adjusting the kernel size of the filter.
scipy.optimize improvements
- scipy.optimize.brutenow coerces non-iterable/single-value- argsinto a tuple.
- scipy.optimize.least_squaresand- scipy.optimize.curve_fitnow accept- scipy.optimize.Boundsfor bounds constraints.
- Added a tutorial for scipy.optimize.milp.
- Improved the pretty-printing of scipy.optimize.OptimizeResultobjects.
- Additional options (parallel,threads,mip_rel_gap) can now be passed toscipy.optimize.linprogwithmethod='highs'.
scipy.signal improvements
- The new window function scipy.signal.windows.lanczoswas added to compute a Lanczos window, also known as a sinc window.
scipy.sparse.csgraph improvements
- the performance of scipy.sparse.csgraph.dijkstrahas been improved, and star graphs in particular see a marked performance improvement
scipy.special improvements
- The new function scipy.special.powm1, a ufunc with signaturepowm1(x, y), computesx**y - 1. The function avoids the loss of precision that can result whenyis close to 0 or whenxis close to 1.
- scipy.special.erfinvis now more accurate as it leverages the Boost equivalent under the hood.
scipy.stats improvements
- Added scipy.stats.goodness_of_fit, a generalized goodness-of-fit test for use with any univariate distribution, any combination of known and unknown parameters, and several choices of test statistic (Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling).
- Improved scipy.stats.bootstrap: Default method'BCa'now supports multi-sample statistics. Also, the bootstrap distribution is returned in the result object, and the result object can be passed into the function as parameterbootstrap_resultto add additional resamples or change the confidence interval level and type.
- Added maximum spacing estimation to scipy.stats.fit.
- Added the Poisson means test ("E-test") as scipy.stats.poisson_means_test.
- Added new sample statistics. - Added scipy.stats.contingency.odds_ratioto compute both the conditional and unconditional odds ratios and corresponding confidence intervals for 2x2 contingency tables.
- Added scipy.stats.directional_statsto compute sample statistics of n-dimensional directional data.
- Added scipy.stats.expectile, which generalizes the expected value in the same way as quantiles are a generalization of the median.
 
- Added 
- Added new statistical distributions. - Added scipy.stats.uniform_direction, a multivariate distribution to sample uniformly from the surface of a hypersphere.
- Added scipy.stats.random_table, a multivariate distribution to sample uniformly from m x n contingency tables with provided marginals.
- Added scipy.stats.truncpareto, the truncated Pareto distribution.
 
- Added 
- Improved the - fitmethod of several distributions.- scipy.stats.skewnormand- scipy.stats.weibull_minnow use an analytical solution when- method='mm', which also serves a starting guess to improve the performance of- method='mle'.
- scipy.stats.gumbel_rand- scipy.stats.gumbel_l: analytical maximum likelihood estimates have been extended to the cases in which location or scale are fixed by the user.
- Analytical maximum likelihood estimates have been added for
scipy.stats.powerlaw.
 
- Improved random variate sampling of several distributions. - Drawing multiple samples from scipy.stats.matrix_normal,scipy.stats.ortho_group,scipy.stats.special_ortho_group, andscipy.stats.unitary_groupis faster.
- The rvsmethod ofscipy.stats.vonmisesnow wraps to the interval[-np.pi, np.pi].
- Improved the reliability of scipy.stats.loggammarvsmethod for small values of the shape parameter.
 
- Drawing multiple samples from 
- Improved the speed and/or accuracy of functions of several statistical distributions. - Added scipy.stats.Covariancefor better speed, accuracy, and user control in multivariate normal calculations.
- scipy.stats.skewnormmethods- cdf,- sf,- ppf, and- isfmethods now use the implementations from Boost, improving speed while maintaining accuracy. The calculation of higher-order moments is also faster and more accurate.
- scipy.stats.invgaussmethods- ppfand- isfmethods now use the implementations from Boost, improving speed and accuracy.
- scipy.stats.invweibullmethods- sfand- isfare more accurate for small probability masses.
- scipy.stats.nctand- scipy.stats.ncx2now rely on the implementations from Boost, improving speed and accuracy.
- Implemented the logpdfmethod ofscipy.stats.vonmisesfor reliability in extreme tails.
- Implemented the isfmethod ofscipy.stats.levyfor speed and accuracy.
- Improved the robustness of scipy.stats.studentized_rangefor largedfby adding an infinite degree-of-freedom approximation.
- Added a parameter lower_limittoscipy.stats.multivariate_normal, allowing the user to change the integration limit from -inf to a desired value.
- Improved the robustness of entropyofscipy.stats.vonmisesfor large concentration values.
 
- Added 
- Enhanced - scipy.stats.gaussian_kde.- Added scipy.stats.gaussian_kde.marginal, which returns the desired marginal distribution of the original kernel density estimate distribution.
- The cdfmethod ofscipy.stats.gaussian_kdenow accepts alower_limitparameter for integrating the PDF over a rectangular region.
- Moved calculations for scipy.stats.gaussian_kde.logpdfto Cython, improving speed.
- The global interpreter lock is released by the pdfmethod ofscipy.stats.gaussian_kdefor improved multithreading performance.
- Replaced explicit matrix inversion with Cholesky decomposition for speed and accuracy.
 
- Added 
- Enhanced the result objects returned by many - scipy.statsfunctions- Added a confidence_intervalmethod to the result object returned byscipy.stats.ttest_1sampandscipy.stats.ttest_rel.
- The scipy.statsfunctionscombine_pvalues,fisher_exact,chi2_contingency,median_testandmoodnow return bunch objects rather than plain tuples, allowing attributes to be accessed by name.
- Attributes of the result objects returned by multiscale_graphcorr,anderson_ksamp,binomtest,crosstab,pointbiserialr,spearmanr,kendalltau, andweightedtauhave been renamed tostatisticandpvaluefor consistency throughoutscipy.stats. Old attribute names are still allowed for backward compatibility.
- scipy.stats.andersonnow returns the parameters of the fitted distribution in a- scipy.stats._result_classes.FitResultobject.
- The plotmethod ofscipy.stats._result_classes.FitResultnow accepts aplot_typeparameter; the options are'hist'(histogram, default),'qq'(Q-Q plot),'pp'(P-P plot), and'cdf'(empirical CDF plot).
- Kolmogorov-Smirnov tests (e.g. scipy.stats.kstest) now return the location (argmax) at which the statistic is calculated and the variant of the statistic used.
 
- Added a 
- Improved the performance of several - scipy.statsfunctions.- Improved the performance of scipy.stats.cramervonmises_2sampandscipy.stats.ks_2sampwithmethod='exact'.
- Improved the performance of scipy.stats.siegelslopes.
- Improved the performance of scipy.stats.mstats.hdquantile_sd.
- Improved the performance of scipy.stats.binned_statistic_ddfor several NumPy statistics, and binned statistics methods now support complex data.
 
- Improved the performance of 
- Added the - scrambleoptional argument to- scipy.stats.qmc.LatinHypercube. It replaces- centered, which is now deprecated.
- Added a parameter optimizationto allscipy.stats.qmc.QMCEnginesubclasses to improve characteristics of the quasi-random variates.
- Added tie correction to scipy.stats.mood.
- Added tutorials for resampling methods in scipy.stats.
- scipy.stats.bootstrap,- scipy.stats.permutation_test, and- scipy.stats.monte_carlo_testnow automatically detect whether the provided- statisticis vectorized, so passing the- vectorizedargument explicitly is no longer required to take advantage of vectorized statistics.
- Improved the speed of scipy.stats.permutation_testfor permutation types'samples'and'pairings'.
- Added axis,nan_policy, and masked array support toscipy.stats.jarque_bera.
- Added the nan_policyoptional argument toscipy.stats.rankdata.
- scipy.miscmodule and all the methods in- miscare deprecated in v1.10 and will be completely removed in SciPy v2.0.0. Users are suggested to utilize the- scipy.datasetsmodule instead for the dataset methods.
- scipy.stats.qmc.LatinHypercubeparameter- centeredhas been deprecated. It is replaced by the- scrambleargument for more consistency with other QMC engines.
- scipy.interpolate.interp2dclass has been deprecated. The docstring of the deprecated routine lists recommended replacements.
- There is an ongoing effort to follow through on long-standing deprecations.
- The following previously deprecated features are affected: - Removed cond&rcondkwargs inlinalg.pinv
- Removed wrappers scipy.linalg.blas.{clapack, flapack}
- Removed scipy.stats.NumericalInverseHermiteand removedtol&max_intervalskwargs fromscipy.stats.sampling.NumericalInverseHermite
- Removed local_search_optionskwarg frromscipy.optimize.dual_annealing.
 
- Removed 
- scipy.stats.bootstrap,- scipy.stats.permutation_test, and- scipy.stats.monte_carlo_testnow automatically detect whether the provided- statisticis vectorized by looking for an- axisparameter in the signature of- statistic. If an- axisparameter is present in- statisticbut should not be relied on for vectorized calls, users must pass option- vectorized==Falseexplicitly.
- scipy.stats.multivariate_normalwill now raise a- ValueErrorwhen the covariance matrix is not positive semidefinite, regardless of which method is called.
- Name (commits)
- h-vetinari (10)
- Jelle Aalbers (1)
- Alan-Hung (1) +
- Tania Allard (7)
- Oren Amsalem (1) +
- Sven Baars (10)
- Balthasar (1) +
- Ross Barnowski (1)
- Christoph Baumgarten (2)
- Peter Bell (2)
- Sebastian Berg (1)
- Aaron Berk (1) +
- boatwrong (1) +
- Jake Bowhay (50)
- Matthew Brett (4)
- Evgeni Burovski (93)
- Matthias Bussonnier (6)
- Dominic C (2)
- Mingbo Cai (1) +
- James Campbell (2) +
- CJ Carey (4)
- cesaregarza (1) +
- charlie0389 (1) +
- Hood Chatham (5)
- Andrew Chin (1) +
- Daniel Ching (1) +
- Leo Chow (1) +
- chris (3) +
- John Clow (1) +
- cm7S (1) +
- cmgodwin (1) +
- Christopher Cowden (2) +
- Henry Cuzco (2) +
- Anirudh Dagar (10)
- Hans Dembinski (2) +
- Jaiden di Lanzo (24) +
- Felipe Dias (1) +
- Dieter Werthmüller (1)
- Giuseppe Dilillo (1) +
- dpoerio (1) +
- drpeteb (1) +
- Christopher Dupuis (1) +
- Jordan Edmunds (1) +
- Pieter Eendebak (1) +
- Jérome Eertmans (1) +
- Fabian Egli (2) +
- Sebastian Ehlert (2) +
- Kian Eliasi (1) +
- Tomohiro Endo (1) +
- Stefan Endres (1)
- Zeb Engberg (4) +
- Jonas Eschle (1) +
- Thomas J. Fan (9)
- fiveseven (1) +
- Neil Flood (1) +
- Franz Forstmayr (1)
- Sara Fridovich-Keil (1)
- David Gilbertson (1) +
- Ralf Gommers (251)
- Marco Gorelli (2) +
- Matt Haberland (381)
- Andrew Hawryluk (2) +
- Christoph Hohnerlein (2) +
- Loïc Houpert (2) +
- Shamus Husheer (1) +
- ideasrule (1) +
- imoiwm (1) +
- Lakshaya Inani (1) +
- Joseph T. Iosue (1)
- iwbc-mzk (1) +
- Nathan Jacobi (3) +
- Julien Jerphanion (5)
- He Jia (1)
- jmkuebler (1) +
- Johannes Müller (1) +
- Vedant Jolly (1) +
- Juan Luis Cano Rodríguez (2)
- Justin (1) +
- jvavrek (1) +
- jyuv (2)
- Kai Mühlbauer (1) +
- Nikita Karetnikov (3) +
- Reinert Huseby Karlsen (1) +
- kaspar (2) +
- Toshiki Kataoka (1)
- Robert Kern (3)
- Joshua Klein (1) +
- Andrew Knyazev (7)
- Jozsef Kutas (16) +
- Eric Larson (4)
- Lechnio (1) +
- Antony Lee (2)
- Aditya Limaye (1) +
- Xingyu Liu (2)
- Christian Lorentzen (4)
- Loïc Estève (2)
- Thibaut Lunet (2) +
- Peter Lysakovski (1)
- marianasalamoni (2) +
- mariprudencio (1) +
- Paige Martin (1) +
- Arno Marty (1) +
- matthewborish (3) +
- Damon McDougall (1)
- Nicholas McKibben (22)
- McLP (1) +
- mdmahendri (1) +
- Melissa Weber Mendonça (9)
- Jarrod Millman (1)
- Naoto Mizuno (2)
- Shashaank N (1)
- Pablo S Naharro (1) +
- nboudrie (1) +
- Andrew Nelson (52)
- Nico Schlömer (1)
- NiMlr (1) +
- o-alexandre-felipe (1) +
- Maureen Ononiwu (1) +
- Dimitri Papadopoulos (2) +
- partev (1) +
- Tirth Patel (10)
- Paulius Šarka (1) +
- Josef Perktold (1)
- Giacomo Petrillo (3) +
- Matti Picus (1)
- Rafael Pinto (1) +
- PKNaveen (1) +
- Ilhan Polat (6)
- Akshita Prasanth (2) +
- Sean Quinn (1)
- Tyler Reddy (117)
- Martin Reinecke (1)
- Ned Richards (1)
- Marie Roald (1) +
- Sam Rosen (4) +
- Pamphile Roy (103)
- sabonerune (2) +
- Atsushi Sakai (94)
- Daniel Schmitz (27)
- Anna Scholtz (1) +
- Eli Schwartz (11)
- serge-sans-paille (2)
- JEEVANSHI SHARMA (1) +
- ehsan shirvanian (2) +
- siddhantwahal (2)
- Mathieu Dutour Sikiric (1) +
- Sourav Singh (1)
- Alexander Soare (1) +
- Bjørge Solli (2) +
- Scott Staniewicz (1)
- Albert Steppi (3)
- Thomas Stoeger (1) +
- Kai Striega (4)
- Tartopohm (1) +
- Mamoru TASAKA (2) +
- Ewout ter Hoeven (5)
- TianyiQ (1) +
- Tiger (1) +
- Will Tirone (1)
- Edgar Andrés Margffoy Tuay (1) +
- Dmitry Ulyumdzhiev (1) +
- Hari Vamsi (1) +
- VitalyChait (1) +
- Rik Voorhaar (1) +
- Samuel Wallan (4)
- Stefan van der Walt (2)
- Warren Weckesser (145)
- wei2222 (1) +
- windows-server-2003 (3) +
- Marek Wojciechowski (2) +
- Niels Wouda (1) +
- WRKampi (1) +
- Yeonjoo Yoo (1) +
- Rory Yorke (1)
- Xiao Yuan (2) +
- Meekail Zain (2) +
- Fabio Zanini (1) +
- Steffen Zeile (1) +
- Egor Zemlyanoy (19)
- Gavin Zhang (3) +
A total of 180 people contributed to this release. People with a "+" by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
Files
      
        scipy/scipy-v1.10.0rc1.zip
        
      
    
    
      
        Files
         (26.3 MB)
        
      
    
    | Name | Size | Download all | 
|---|---|---|
| md5:d91b39ccf9e9e7009f9542acbb82a932 | 26.3 MB | Preview Download | 
Additional details
Related works
- Is supplement to
- https://github.com/scipy/scipy/tree/v1.10.0rc1 (URL)